# Transfer Function MCQ’s

This set of Network Theory Multiple Choice Questions & Answers (MCQs) focuses on “Transfer Function”.

1. In the circuit shown below, if current is defined as the response signal of the circuit, then determine the transfer function.

a) H(s)=C/(S2 LC+RCS+1)
b) H(s)=SC/(S2 LC-RCS+1)
c) H(s)=SC/(S2 LC+RCS+1)
d) H(s)=SC/(S2 LC+RCS-1)

2. In the circuit shown below, if voltage across the capacitor is defined as the output signal of the circuit, then the transfer function is?

a) H(s)=1/(S2 LC-RCS+1)
b) H(s)=1/(S2 LC+RCS+1)
c) H(s)=1/(S2 LC+RCS-1)
d) H(s)=1/(S2 LC-RCS-1)

3. The transfer function of a system having the input as X(s) and output as Y(s) is?
a) Y(s)/X(s)
b) Y(s) * X(s)
c) Y(s) + X(s)
d) Y(s) – X(s)

4. Let us assume x (t) = A cos(ωt + φ), then the Laplace transform of x (t) is?
a) X(S)=A(Scos Ø-ω sinØ)/(S22)
b) X(S)=A(Scos Ø+ω sinØ)/(S22)
c) X(S)=A(Scos Ø+ω sinØ)/(S22)
d) X(S)=A(Scos Ø-ω sinØ)/(S22)

5. Let us assume x (t) = A cos(ωt + φ), on taking the partial fractions for the response we get?
a) Y(s)=k1/(s-jω)+(k1)/(s+jω)+Σterms generated by the poles of H(s)
b) Y(s)=k1/(s+jω)+(k1)/(s+jω)+Σterms generated by the poles of H(s)
c) Y(s)=k1/(s+jω)+(k1)/(s-jω)+Σterms generated by the poles of H(s)
d) Y(s)=k1/(s-jω)+(k1)/(s-jω)+Σterms generated by the poles of H(s)

6. The relation between H (jω) and θ (ω) is?
a) H(jω)=e-jθ (ω)
b) H(jω)=|H(jω)|e-jθ (ω)
c) H(jω)=|H(jω)|ejθ (ω)
d) H(jω)=ejθ (ω)

7. Let us assume x (t) = A cos(ωt + φ), what is the s-domain expression?
a) Y(s)=H(s) A(Scos Ø-ω sinØ)/(S22)
b) Y(s)=H(s) A(Scos Ø+ω sinØ)/(S22)
c) Y(s)=H(s) A(Scos Ø-ω sinØ)/(S22)
d) Y(s)=H(s) A(Scos Ø+ω sinØ)/(S22)

8. Let us assume x (t) = A cos(ωt + φ), what is the value of k1?
a) 1/2 H(jω)Ae
b) H(jω)Ae-jØ
c) H(jω)Ae
d) 1/2 H(jω)Ae-jØ

9. Let us assume x (t) = A cos(ωt + φ), what is the value of k1 by considering θ (ω) is?
a) |H(jω)|ej[θ (ω)+Ø]
b) A/2|H(jω)|ej[θ (ω)+Ø]
c) |H(jω)|e-j[θ (ω)+Ø]
d) A/2 |H(jω)|e-j[θ (ω)+Ø]

10. Let us assume x (t) = A cos(ωt + φ), What is the final steady state solution for y (t)?
a) A|H(jω)|cos⁡[ωt+Ø+ θ (ω)]b) A|H(jω)|cos⁡[ωt-Ø+ θ (ω)]c) A|H(jω)|cos⁡[ωt-Ø- θ (ω)]d) A|H(jω)|cos⁡[ωt+Ø- θ (ω)]